Skip to main content

Flume 1.2.0 released

Listen:

The Apache Flume Team released yesterday the next large release with number 1.2.0. Here a overview about the fixes and additions (thanks Mike, I copy your overview):

Apache Flume 1.2.0 is the third release under the auspices of Apache of the so-called "NG" codeline, and our first release as a top-level Apache project! Flume 1.2.0 has been put through many stress and regression tests, is stable, production-ready software, and is backwards-compatible with Flume 1.1.0. Four months of very active development went into this release: a whopping 192 patches were committed since 1.1.0, representing many features, enhancements, and bug fixes. While the full change log can be found in the link below, here are a few new feature highlights:

* New durable file channel 
* New client API 
* New HBase sinks (two different implementations) 
* New Interceptor interface (a plugin processing API) 
* New JMX-based monitoring support

With this release - the first after evolving into a tier 1 Apache project - we've updated the website and firstly have a well written UserGuide (again thanks to Mike and Ralph for their great effort).

User-Guide: http://flume.apache.org/FlumeUserGuide.html
Api-Documention:  http://flume.apache.org/releases/content/1.2.0/apidocs/

What's the next?
Now, we got a increasing interest into a Windows version. I don't know why, but that's happen. I try to port some of the sinks into a Windows Platform - if you're a Windows Developer and you've time to spent into the project, all hands are welcome.


Comments

Popular posts from this blog

Deal with corrupted messages in Apache Kafka

Under some strange circumstances, it can happen that a message in a Kafka topic is corrupted. This often happens when using 3rd party frameworks with Kafka. In addition, Kafka < 0.9 does not have a lock on Log.read() at the consumer read level, but does have a lock on Log.write(). This can lead to a rare race condition as described in KAKFA-2477 [1]. A likely log entry looks like this: ERROR Error processing message, stopping consumer: (kafka.tools.ConsoleConsumer$) kafka.message.InvalidMessageException: Message is corrupt (stored crc = xxxxxxxxxx, computed crc = yyyyyyyyyy Kafka-Tools Kafka stores the offset of each consumer in Zookeeper. To read the offsets, Kafka provides handy tools [2]. But you can also use zkCli.sh, at least to display the consumer and the stored offsets. First we need to find the consumer for a topic (> Kafka 0.9): bin/kafka-consumer-groups.sh --zookeeper management01:2181 --describe --group test Prior to Kafka 0.9, the only way to get this in...

Beyond Ctrl+F - Use LLM's For PDF Analysis

PDFs are everywhere, seemingly indestructible, and present in our daily lives at all thinkable and unthinkable positions. We've all got mountains of them, and even companies shouting about "digital transformation" haven't managed to escape their clutches. Now, I'm a product guy, not a document management guru. But I started thinking: if PDFs are omnipresent in our existence, why not throw some cutting-edge AI at the problem? Maybe Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) could be the answer. Don't get me wrong, PDF search indexes like Solr exist, but they're basically glorified Ctrl+F. They point you to the right file, but don't actually help you understand what's in it. And sure, Microsoft Fabric's got some fancy PDF Q&A stuff, but it's a complex beast with a hefty price tag. That's why I decided to experiment with LLMs and RAG. My idea? An intelligent knowledge base built on top of our existing P...

Run Llama3 (or any LLM / SLM) on Your MacBook in 2024

I'm gonna be real with you: the Cloud and SaaS / PaaS is great... until it isn't. When you're elbow-deep in doing something with the likes of ChatGPT or Gemini or whatever, the last thing you need is your AI assistant starts choking (It seems that upper network connection was reset) because 5G or the local WiFi crapped out or some server halfway across the world is having a meltdown(s). That's why I'm all about running large language models (LLMs) like Llama3 locally. Yep, right on your trusty MacBook. Sure, the cloud's got its perks, but here's why local is the way to go, especially for me: Privacy:  When you're brainstorming the next big thing, you don't want your ideas floating around on some random server. Keeping your data local means it's  yours , and that's a level of control I can get behind. Offline = Uninterrupted Flow:  Whether you're on a plane, at a coffee shop with spotty wifi, or jus...