Skip to main content

Centralized logfile management across networks with flume

Listen:

Facebooks's scribe was the first available service for managing a hughe amount on logfiles. We didn't talk over 2 GB / day or so, I mean more as 1 TB per day. Compressed.
Now, a new apache incubator project is flume [1]. It is a pretty nice piece of software, so I love it. It is reliable, fast, safe and has no proprietary stack inside. And you can create really cool logging tasks.

If you use Clouderas Distribution you get flume easy with a "yum install flume-master" on the master and "yum install flume-node" on a node. Check [2] for more infos about.

Flume has a lot of sources to get logfiles:
- from a text-file
- as a tail (one or more files)
- syslog UDP or TCP
- synthetic sources

Flume's design belongs to a large logfile distribution process. Let's assume, we have a 100 Node Webcluster and incoming traffic around 3 GB/s. The farm produce 700 MB raw weblogs per minute.
Through the processing over flume we can compress the files, sort them into buckets you need and fast deliver into our hdfs. Here a working example:

cat /flume-zk/running.cfg
collector1.local : autoCollectorSource | collectorSink( "hdfs://namenode.local:9000/user/flume/weblogs/%Y-%m-%d/%H00/%M/", "%{host}-" );
collector2.local : autoCollectorSource | collectorSink( "hdfs://namenode.local:9000/user/flume/weblogs/%Y-%m-%d/%H00/%M/", "%{host}-" );
collector3.local : autoCollectorSource | collectorSink( "hdfs://namenode.local:9000/user/flume/weblogs/%Y-%m-%d/%H00/%M/", "%{host}-" );
collector4.local : autoCollectorSource | collectorSink( "hdfs://namenode.local:9000/user/flume/weblogs/%Y-%m-%d/%H00/%M/", "%{host}-" );
agent1.local : syslogTcp( "19800" ) | autoE2EChain;
agent2.local : syslogTcp( "19800" ) | autoE2EChain;

The chain autoE2EChain describe a failover process, if one of the nodes didn't respond they will be moved at the end. You will see the logical mapping at the webinterface (http://flume-master:35871/flumemaster.jsp).
We split the data here into minutes and set as a identifier the host from which we get the logs at the end. Make it easier to debug. The webfarm logs via a loadbalancer to the agents (input syslog, output 19800). 19800 is a free unprivileged port, as example.

Let us check one of the agents:
# cd /tmp/flume/agent/agent1.local/
# ls
done  logged  sending  sent  writing

# ls -lah writing/
total 418M
drwxr-xr-x 2 flume flume 4.0K Sep 28 16:25 .
drwxr-xr-x 7 flume flume 4.0K Sep 28 10:21 ..
-rw-r--r-- 1 flume flume 418M Sep 28 16:25 log.00000019.20111011-162503316+0200.10204828793997118.seq

That the logfile we receive at the moment from our nodes. After writing (you can define the split in flume.conf) the log will be sent to the collectors, so we connect to collector1:

# tail -f -n 10 /var/log/flume/*.log
<del>: Creating org.apache.hadoop.io.compress.BZip2Codec@3c9d9efb compressed HDFS file: hdfs://namenode.local:9000/user/flume/weblogs/2011-09-28/1600/25/agent1.local-log.00000019.20111011-162503316+0200.10204828793997118.seq.bzip2
<del>: Finishing checksum group called 'log.00000019.20111011-162503316+0200.10204828793997118.seq'
<del>: Checksum succeeded 1325c55440e
<del>: moved from partial to complete log.00000019.20111011-162503316+0200.10204828793997118.seq
<del>: Closing hdfs://namenode.local:9000/user/flume/weblogs/2011-09-28/1600/25/agent1.local-log.00000019.20111011-162503316+0200.10204828793997118.seq
<del>: Closing HDFS file: hdfs://namenode.local:9000/user/flume/weblogs/2011-09-28/1600/25/agent1.local-log.log.00000019.20111011-162503316+0200.10204828793997118.seq.bzip2

You see, the collector receive the action from the agent, open a sink into hdfs, write via stream the file and close the sink after the time we configured. Pretty nice! The logging mechanism works perfectly, the files will be splitted and compressed as bzip into 1 minute-pieces into our hdfs. Remember, use always bzip as compress codecs because the codec understand markers (blocksize, reducing etc).

[1] https://cwiki.apache.org/FLUME/
[2] https://ccp.cloudera.com/display/CDHDOC/Flume+Installation

Comments

Popular posts from this blog

Beyond Ctrl+F - Use LLM's For PDF Analysis

PDFs are everywhere, seemingly indestructible, and present in our daily lives at all thinkable and unthinkable positions. We've all got mountains of them, and even companies shouting about "digital transformation" haven't managed to escape their clutches. Now, I'm a product guy, not a document management guru. But I started thinking: if PDFs are omnipresent in our existence, why not throw some cutting-edge AI at the problem? Maybe Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) could be the answer. Don't get me wrong, PDF search indexes like Solr exist, but they're basically glorified Ctrl+F. They point you to the right file, but don't actually help you understand what's in it. And sure, Microsoft Fabric's got some fancy PDF Q&A stuff, but it's a complex beast with a hefty price tag. That's why I decided to experiment with LLMs and RAG. My idea? An intelligent knowledge base built on top of our existing P...

Deal with corrupted messages in Apache Kafka

Under some strange circumstances, it can happen that a message in a Kafka topic is corrupted. This often happens when using 3rd party frameworks with Kafka. In addition, Kafka < 0.9 does not have a lock on Log.read() at the consumer read level, but does have a lock on Log.write(). This can lead to a rare race condition as described in KAKFA-2477 [1]. A likely log entry looks like this: ERROR Error processing message, stopping consumer: (kafka.tools.ConsoleConsumer$) kafka.message.InvalidMessageException: Message is corrupt (stored crc = xxxxxxxxxx, computed crc = yyyyyyyyyy Kafka-Tools Kafka stores the offset of each consumer in Zookeeper. To read the offsets, Kafka provides handy tools [2]. But you can also use zkCli.sh, at least to display the consumer and the stored offsets. First we need to find the consumer for a topic (> Kafka 0.9): bin/kafka-consumer-groups.sh --zookeeper management01:2181 --describe --group test Prior to Kafka 0.9, the only way to get this in...

What Makes You The Number 1 Product Manager?

Amazon often does this thing where they start with the customer instead of just coming up with a product and then trying to figure out how to sell it. They call it " working backwards. " This strategy totally works for any product decisions, but it's especially important when they're making something new. The Press Release Exercise When it comes to launching new stuff, product managers usually start by writing a press release for customers. This press release is all about their pain points, how current solutions fall short, and how the new product is going to crush it. If the benefits don't get customers excited, the product manager needs to keep tweaking the press release until it sounds super awesome. It's way easier and cheaper to make changes to a press release than it is to change the product itself. Here’s a template I use to describe a new service or product: Main heade r: The product name anyone directly understands, like “Ultra-compact power charger” ...